Introduction

- Case Studies on
 - Pile Heave and Displacement of Driven Pile Installation
 - Failure of Piled Supported Wall under Extreme Lateral Loading
 - Pile Test Interpretation
 - Global Strain Measurement for Compressive & Tensile Loading

- Conclusions & Recommendation
Overview

- Common problems of installing displacement piles in soft ground
- Design robustness of piled supported wall
- Common overlooked issues of pile testing instrumentation

Case 1: Pile Heave & Lateral Soil Displacement

- Rapid pile installation in incompressible soft soil induces
 - Vertical heave in shallow depth (relatively less confinement from weight of overburden soils)
 - Lateral displacement in deeper depth (with soil confinement)

- Consequences:
 - Up-heaving soil movement causes tensile stress on pile & toe lift up during driving & downdrag after pore pressure dissipation
 - Lateral soil displacement causes flexural stress on pile & pile deviation
 - Excessive combined tensile and flexural stresses lead to pile joint dislodgement
 - Excessive foundation settlement in post construction (pile toe uplifting & downdrag settlement)
Pile Joint Dislodgement

- Pile joints could be dislodged due to excessive flexural and tensile stresses induced by ground heave and radial soil displacement
- Detectable using High Strain Dynamic Pile Test (HSDPT)

Mechanism of Pile Heave & Soil Displacement
Case Study - HSDPT

- Monitoring of pile top settlement during the HSDPT re-strike tests is summarised as below:

<table>
<thead>
<tr>
<th>Cumulative Pile Top Settlement (mm)</th>
<th>Pile C</th>
<th>Pile A</th>
<th>Pile B</th>
<th>Pile D</th>
<th>Pile E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon resting 7-ton hammer on pile top</td>
<td>80</td>
<td>98</td>
<td>125</td>
<td>103</td>
<td>92</td>
</tr>
<tr>
<td>At the end of Restriking Test</td>
<td>275</td>
<td>399</td>
<td>497</td>
<td>186</td>
<td>182</td>
</tr>
</tbody>
</table>

Case Study - HSDPT

- Pile B
- Initial Blow

One Pile Length (12m) was DETECTED with Major Discontinuity at ‘toe’ (reflection)
Case Study - HSDPT

- Pile B
- Blow No. 4

First Joint Discontinuity closed up after few blows; Two Pile Lengths was revealed with another Major Discontinuity at new ‘toe’ (reflection)

Case Study - HSDPT

- Pile B
- Blow No. 17

Second Major Joint Discontinuity also disappeared; Total of Three Pile Lengths was observed
Case Study - HSDPT

- Pile B
- End of Blow

Minor velocity reflections were observable at first and second pile joints.

Pile Heave Monitoring Program
Summary of Case 1

- **Ground heave & radial soil displacement** due to rapid installation of displacement pile in soft incompressible soft clay can pose serious integrity problem on pile foundation.

- **Solutions**:
 - Use larger pile spacing & reduce rate of clustered pile installation for adequate time for dissipation of excess pore pressure
 - Simultaneous pile installation at mirror pile location from centre *outwards* to minimise net lateral displacement, but this improves nothing on ground heave
 - Stronger pile structural strength & joint to withstand tensile & flexural stresses
 - Staggered pile installation sequence or install piles at alternate locations
 - Restrike all piles with HSDPT to detect pile integrity if ground or soil heave is observed.
Case 2: Case study on Piled Supported Wall Failure

- **8m RS Wall + 2m L-Shaped RC Wall**
 - Foundation: Vertical piles + Raked Piles (3 rows each)
 - 400mm thick RC Slab
 - 3~3.5m RC Monsoon Drain in front of Wall

- **Failure occurred on 4 Jan 2007**
 - When RS Wall reached soffit of L-Shaped RC Wall
Site Conditions

- **Soil Conditions**
 - Top 4~5m Fill: medium stiff clayey Silt and clayey Sand (N = 6 to 10)
 - 4~8m very soft to soft Clay (S_u = 40kPa)
 - 8~18m Stiff Sandy Silt (N= 10~30)
 - Fill Platform: Cohesive lateritic soils
 - Wall Backfill: Granular Materials

- **Groundwater Level**
 - RL14m to RL18m

- **Rainfall Records**
 - Intense antecedent rainfall from 10 Dec 06 to 29 Dec 06 before failure
 - Triggering midnight rainfall (20mm/hr) on 3 Jan 07

Rainfall - ARI

<table>
<thead>
<tr>
<th>Rainfall Season</th>
<th>Month</th>
<th>Recorded Max Rainfall (mm)</th>
<th>CF Reference Station</th>
<th>Intensity, I (mm/hr)</th>
<th>ARI (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/10/06-11/11/06 (Oct)</td>
<td>107</td>
<td>109</td>
<td>137</td>
<td>Stn JPS JE (1)</td>
<td>4.45</td>
</tr>
<tr>
<td>11/11/06-11/12/06 (Nov)</td>
<td>67</td>
<td>103</td>
<td>131</td>
<td>Stn JPS JE (1)</td>
<td>2.79</td>
</tr>
<tr>
<td>11/12/06-11/17/07 (Dec)</td>
<td>292</td>
<td>371</td>
<td>477</td>
<td>Stn JPS JE (1)</td>
<td>12.17</td>
</tr>
<tr>
<td>12/13/07-3/10/07 (Jan)</td>
<td>234</td>
<td>351</td>
<td>364</td>
<td>Stn JPS JE (1)</td>
<td>2.33</td>
</tr>
</tbody>
</table>
Rainfall Record

Site Observation

- Panels
 - Wet panels & traces watermark shown water seeping out at the panel joints
 - The highest level of observed water seeping was immediately below 2m high L-shaped RC wall
 \[\therefore \text{Evidence of high water table behind the wall panel} \]

- Pile Foundation
 - Flexural damage of pile body at 1.75m to 2m below slab soffit level
 - Significant rotation of upper part of pile above the plastic hinge
 \[\therefore \text{Likely due to excessive lateral load on piles} \]
3/29/2010

Precast Precast RC panel

Water seepage sign

RL 27.0m

2m top RC panel

Monsoon Drain

Damaged Foundation Piles

RL 18.6m

1.5m

Raked pile

1.8m

Damaged condition
Investigation Approach

- Examine induced Axial & Lateral Forces and Moments on Piles at **Design Condition & Failure**
- Use of Lateral earth pressure theory
- Piglet to compute pile group load distribution
- Check FOS against
 - Pile axial capacity
 - Pile lateral capacity
 - Pile structural adequacy (Moment & Shear)
Design Scenario A (GWT at Monsoon Drain)
Design Scenario A Results

GWT at Top of Monsoon Drain (RL20.18m)

<table>
<thead>
<tr>
<th>File no.</th>
<th>Axial loads [kN]</th>
<th>Status</th>
<th>Lateral loads [kN]</th>
<th>Lateral Resistance [kN]</th>
<th>FOS</th>
<th>Moments [kNm]</th>
<th>Ultimate Moment Resistance [kNm]</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>261.40</td>
<td>OK</td>
<td>87.27</td>
<td>86.00</td>
<td>2.8</td>
<td>13.30</td>
<td>62</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>385.62</td>
<td>OK</td>
<td>99.56</td>
<td>97.00</td>
<td>2.2</td>
<td>14.10</td>
<td>63</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>460.42</td>
<td>OK</td>
<td>18.82</td>
<td>83.11</td>
<td>5.5</td>
<td>5.88</td>
<td>66</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>402.78</td>
<td>OK</td>
<td>13.98</td>
<td>83.11</td>
<td>0.7</td>
<td>4.94</td>
<td>66</td>
<td>8.9</td>
</tr>
<tr>
<td>5</td>
<td>715.15</td>
<td>OK</td>
<td>16.16</td>
<td>91.00</td>
<td>5.6</td>
<td>5.75</td>
<td>68</td>
<td>7.9</td>
</tr>
<tr>
<td>6</td>
<td>580.48</td>
<td>OK</td>
<td>42.14</td>
<td>91.00</td>
<td>2.2</td>
<td>15.00</td>
<td>68</td>
<td>3.0</td>
</tr>
<tr>
<td>7</td>
<td>288.36</td>
<td>OK</td>
<td>44.10</td>
<td>86.00</td>
<td>1.9</td>
<td>16.70</td>
<td>62</td>
<td>2.6</td>
</tr>
<tr>
<td>8</td>
<td>302.52</td>
<td>OK</td>
<td>30.15</td>
<td>87.00</td>
<td>2.0</td>
<td>15.70</td>
<td>63</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>450.98</td>
<td>OK</td>
<td>17.64</td>
<td>83.11</td>
<td>5.4</td>
<td>6.90</td>
<td>66</td>
<td>7.2</td>
</tr>
<tr>
<td>10</td>
<td>598.37</td>
<td>OK</td>
<td>20.91</td>
<td>83.11</td>
<td>4.5</td>
<td>7.40</td>
<td>66</td>
<td>5.9</td>
</tr>
<tr>
<td>11</td>
<td>613.76</td>
<td>OK</td>
<td>10.16</td>
<td>91.00</td>
<td>9.0</td>
<td>2.30</td>
<td>68</td>
<td>19.0</td>
</tr>
<tr>
<td>12</td>
<td>606.25</td>
<td>OK</td>
<td>44.16</td>
<td>91.00</td>
<td>2.1</td>
<td>15.70</td>
<td>68</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Design Scenario B (1/3 GWT)

- **Finished Ground Profile**
- **Surcharge = 30kPa**
- **Original Ground Profile**
- **Temporary Ground Profile During Piling & Wall Construction**
- **RL20.18m**
- **RL22.0m**
- **RL27.0m**
- **RL28.5m**
- **RL19.0m**
- **RL18.6m**
- **RL17.1m**
Design Scenario B Results

GWT at 1/3 of Retained Height (RL22.0m)

<table>
<thead>
<tr>
<th>Pile</th>
<th>Axial loads (kN)</th>
<th>Status</th>
<th>Lateral loads (kN)</th>
<th>Lateral Resistance (kN)</th>
<th>FOS</th>
<th>Moments (kNm)</th>
<th>Ultimate Moment Resistance (kNm)</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>204.89</td>
<td>CK</td>
<td>62.78</td>
<td>86.00</td>
<td>1.4</td>
<td>22.80</td>
<td>69</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>270.29</td>
<td>CK</td>
<td>64.62</td>
<td>87.00</td>
<td>1.3</td>
<td>31.08</td>
<td>62</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>544.10</td>
<td>CK</td>
<td>55.09</td>
<td>94.34</td>
<td>2.6</td>
<td>49.20</td>
<td>68</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>553.61</td>
<td>CK</td>
<td>29.14</td>
<td>94.00</td>
<td>1.3</td>
<td>29.40</td>
<td>62</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>859.19</td>
<td>CK</td>
<td>58.75</td>
<td>98.11</td>
<td>2.0</td>
<td>13.90</td>
<td>68</td>
<td>3.3</td>
</tr>
<tr>
<td>6</td>
<td>454.67</td>
<td>CK</td>
<td>65.72</td>
<td>89.11</td>
<td>1.4</td>
<td>24.40</td>
<td>62</td>
<td>4.9</td>
</tr>
<tr>
<td>7</td>
<td>236.28</td>
<td>CK</td>
<td>49.95</td>
<td>86.00</td>
<td>1.2</td>
<td>28.40</td>
<td>60</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>349.03</td>
<td>CK</td>
<td>67.00</td>
<td>87.00</td>
<td>1.8</td>
<td>17.26</td>
<td>62</td>
<td>2.4</td>
</tr>
<tr>
<td>9</td>
<td>533.65</td>
<td>CK</td>
<td>95.57</td>
<td>94.34</td>
<td>2.7</td>
<td>12.70</td>
<td>95</td>
<td>3.6</td>
</tr>
<tr>
<td>10</td>
<td>641.16</td>
<td>CK</td>
<td>40.20</td>
<td>89.11</td>
<td>2.2</td>
<td>15.40</td>
<td>68</td>
<td>2.9</td>
</tr>
<tr>
<td>11</td>
<td>185.00</td>
<td>CK</td>
<td>21.67</td>
<td>94.00</td>
<td>4.5</td>
<td>7.71</td>
<td>68</td>
<td>8.0</td>
</tr>
<tr>
<td>12</td>
<td>491.75</td>
<td>CK</td>
<td>70.24</td>
<td>94.00</td>
<td>1.5</td>
<td>25.00</td>
<td>80</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Graph:

- **Global Load Factor of Group Pile**
- **Load Back Calculated Load Factor of Individual Pile**

Chart:

- **Moment (kNm)**
- **Axial Load (kN)**
Failure Scenario (GWT at Top Panel)

- **Original Ground Profile**
- **Temporary Ground Profile During Piling & Wall Construction**
- **Finished Ground Profile**

Failure Scenario Results

GWT at Top RS Wall Panel (RL27.0m)

<table>
<thead>
<tr>
<th>Pile no.</th>
<th>Area Loads (kN)</th>
<th>Status</th>
<th>Lateral Loads (kN)</th>
<th>Lateral Resistance (kN)</th>
<th>FOS</th>
<th>Moments (kN.m)</th>
<th>Ultimate Moment Resistance (kN.m)</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-9</td>
<td>OK</td>
<td>110.96</td>
<td>88.53</td>
<td>0.6</td>
<td>39.20</td>
<td>41</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>43.16</td>
<td>OK</td>
<td>111.18</td>
<td>72.53</td>
<td>0.7</td>
<td>39.80</td>
<td>45</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>804.00</td>
<td>OK</td>
<td>93.11</td>
<td>94.24</td>
<td>1.0</td>
<td>25.80</td>
<td>60</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>675.47</td>
<td>OK</td>
<td>93.02</td>
<td>90.10</td>
<td>1.0</td>
<td>21.00</td>
<td>60</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>987.95</td>
<td>NOT OK</td>
<td>91.91</td>
<td>93.11</td>
<td>1.1</td>
<td>26.70</td>
<td>55</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>115.41</td>
<td>OK</td>
<td>108.82</td>
<td>72.52</td>
<td>0.7</td>
<td>38.50</td>
<td>45</td>
<td>0.8</td>
</tr>
<tr>
<td>7</td>
<td>-7</td>
<td>OK</td>
<td>129.92</td>
<td>88.53</td>
<td>0.5</td>
<td>42.20</td>
<td>41</td>
<td>0.6</td>
</tr>
<tr>
<td>8</td>
<td>82.48</td>
<td>OK</td>
<td>94.48</td>
<td>72.52</td>
<td>0.6</td>
<td>29.00</td>
<td>45</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>588.80</td>
<td>OK</td>
<td>93.11</td>
<td>94.34</td>
<td>1.0</td>
<td>25.80</td>
<td>60</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>708.91</td>
<td>OK</td>
<td>93.82</td>
<td>93.11</td>
<td>1.0</td>
<td>30.80</td>
<td>60</td>
<td>1.5</td>
</tr>
<tr>
<td>11</td>
<td>886.94</td>
<td>NOT OK</td>
<td>78.17</td>
<td>94.00</td>
<td>1.2</td>
<td>18.40</td>
<td>52</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>183.23</td>
<td>OK</td>
<td>117.71</td>
<td>72.52</td>
<td>0.8</td>
<td>41.80</td>
<td>45</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Investigation Findings

- **At Failure**
 - Prolonged intense antecedent rainfall + Triggering rainfall on 3 Jan 2007 caused rising of water table above top RS wall panels
 - Excessive imposed lateral stress exceeds the pile lateral capacity resulting formation of plastic hinge of piles leading to collapse of central portion of wall & pulling the adjoining RS wall

- **At Service Condition**
 - The foundation pile design complies to design requirements (Adequate safety factors)
Conclusions

• Main causation:
 • Excessive lateral wall force due to high water table rise from prolonged intense rainfall

• Foundation design under service condition is acceptable

• Attention shall be given to brittle behaviour of concrete piles taking lateral load with rapid increase of earth pressure when rise of groundwater table within the wall.

29 December 2006 - Johor was the worst hit. Heavy rain – the highest recorded in 100 years – caused floods in Johor Baru and several major towns this month.
Summary of Case 2

- Need careful evaluation of design robustness of vertical and sub-vertical piles in taking lateral foundation loading

Solutions:

- Use more raked piles utilising more robust axial pile strength to resolve lateral imposed loading
- Extra drainage capacity for temporary drains for large flat retained platform
- Timely backfilling of suitable fill over granular fill of RS wall
Pile Test Interpretation
(using Global Strain Measurement)

- **Facts on Axially Tested Pile:**
 - Free standing portion – No friction interference
 - Embedded portion – Constant or linearly varying shaft friction with depth
 - Tensile cracking in tensile loading affecting axial stiffness of composite pile section

- **Factors affecting accuracy of pile instrumentation:**
 - Linearity of load-strain calibration
 - Pile shaft resistance profile assumed
 - Instrument locations for pile axial load measurement
 - Numbers of pile segment movement measurement
 - Gauge length of strain measurement (global / local strain measurement)

- **Consequences:**
 - Interpreted pile axial load at location assigned within the gauge length can be unjustified (unless no interference of shaft friction)

Pile Instrumentation & Interpretation Approaches

- **New Method**
 - Glostrext Method
 - Traditional Method

- Identify pile-soil friction profile (Constant/ or Varying friction with depth)
- Measure movements of instrumented pile segments & pile top load with load-strain calibration
- Derive pile axial load at mid-point from global strain measurement & average mobilised pile-soil friction over gauge length
- Load-movement relationship of each pile segment for load transfer mechanism

- Identify pile-soil friction profile
- Measure localised pile strain and movement of instrumented pile segments independent extensometers & pile top load with load-strain calibration
- Derive localised pile axial load, interpolated pile movement profile & mobilised pile-soil friction
- Load-movement relationship of each pile segment for load transfer mechanism

- Measure movements of instrumented pile segments & pile top load with load-strain calibration
- Derive pile axial load at mid-point from global strain measurement & average mobilised pile-soil friction over gauge length
- Load-movement relationship of each pile segment for load transfer mechanism

- Identify pile-soil friction profile
- Measure localised pile strain and movement of instrumented pile segments independent extensometers & pile top load with load-strain calibration
- Derive localised pile axial load, interpolated pile movement profile & mobilised pile-soil friction
- Load-movement relationship of each pile segment for load transfer mechanism
Load Transfer of Test Pile

\[f_s = \text{Constant} \]

\[f_s = f_{s,0} + mZ \]

\[P_i \quad P_{i+1} \quad P_i \quad P_{i+1} \]

\[\delta_i \quad \delta_i \quad \delta_i \quad \delta_i \]

\[\delta_{i+1} \quad \delta_{i+1} \quad \delta_{i+1} \quad \delta_{i+1} \]

\[F_{s,i} \quad F_{s,i} \quad F_{s,i} \quad F_{s,i} \]

\[P(z) \]

\[\varepsilon(z), \delta(z) \]

\[\text{Linear} \quad \text{Quadratic} \quad 3^{rd} \text{ Degree Polynomial} \]

\[\text{Tensile Pile Test} \]

\[\% \text{ of Pile Diameter} \]

\[\text{Tension Load (kN)} \]

\[\% \text{ of Top Imposed Load} \]

\[\text{Displacement (mm)} \]
Summary of Pile Instrumentation

- Proper planning of instrumented segment of test piles with due consideration of soil stratification, pile resistance profile (constant or varying profile with depth)
- Tensile cracking of concrete under tensile test load leading to irreversible stiffness alteration shall be carefully assessed for proper load transfer

Solutions:
- Identify expected profile of pile-soil friction based on stratification, soil consistency,
- Gauge length shall be reasonably small where practical for proper axial load interpretation, instrumented segment assigned for pile load and movement
- Minimum one axial load measurement per material stratum preferably at the either sides of the stratum interface
- For material strata with varying pile-soil friction with depth, more instrumented segments are needed for refined interpretation of axial load & movement (for best fitting the pile movement profile)
- At least one axial load measurement near to pile base for load transfer of mobilised base resistance

Thank You